⁵¹V and ¹⁹F N.M.R. Study of VO₂F₄³⁻ in Solution

R. J. Gillespie and U. R. K. Rao†

Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

N.m.r. evidence is presented for the existence of $VO_2F_4^{3-}$ in aqueous solutions.

Hatton *et al.*¹ first reported the ⁵¹V n.m.r. spectrum of a V_2O_5 -48% HF mixture to be a 1:4:6:4:1 quintet which they attributed to VOF₄⁻⁻. They assumed that this ion has a square pyramidal structure to explain the equivalence of the four fluorine atoms on the n.m.r. time scale. A recent e.s.r. study² of γ -irradiated polycrystalline (NH₄)₃VO₂F₄ concluded that there are discrete VO₂F₄³⁻ ions in the solid. In this communication we present the results of a study of both the ⁵¹V and ¹⁹F n.m.r. spectra of acidified aqueous solutions of Na(NH₄)₂-VO₂F₄ as well as some other aqueous solutions such as V₂O₅ in 48% HF.

Figure 1 shows the observed ⁵¹V and ¹⁹F n.m.r. spectra of $Na(NH_4)_2VO_2F_4$ in water at ca. +7 °C. These spectra were analysed using the two dimensionless parameters y and xdefined by the relations $y = 2\pi J\tau$ and $x = (\omega_0 - \omega)/2\pi J$ where J is the spin-spin coupling constant between the two nuclei, τ is the relaxation time of the quadrupole nucleus ⁵¹V, and ω_0 and ω are the angular frequencies at the centre and any other point, respectively, of the n.m.r. multiplet.³⁻⁶ The theoretical ⁵¹V spectrum was simulated as a 1:4:6:4:1 multiplet with a separation of J between any two adjacent components and all components having a Lorentzian shape. The corresponding ¹⁹F spectrum was computed using an extension of Poples' treatment.³ The computed n.m.r. line shapes of ⁵¹V and ¹⁹F that gave a good fit for the observed spectra of Na(NH₄)₂- VO_2F_4 are given in Figure 1. A solution of $(NH_4)_3VO_2F_4$ gave essentially the same results. The relevant parameters are given in Table 1. The value of J deduced independently from an apparently featureless ¹⁹F n.m.r. spectrum agrees well with that obtained from the fit of the ⁵¹V multiplet. This agreement shows that it is possible to obtain a reasonably reliable value of the coupling constant from an unresolved spectrum of a

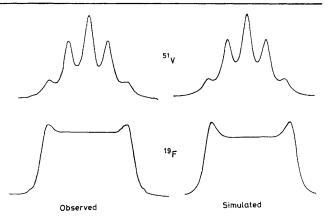


Figure 1. Observed and computer simulated ^{51}V and ^{19}F n.m.r. spectra at ca. $+7\ ^{\circ}C$ of Na(NH₄)₂VO₂F₄ dissolved in water acidified with 48% HF.

spin-} nucleus coupled to a high-spin nucleus. These results confirm that the species in solution contains four equivalent fluorine atoms coupled to a ⁵¹V nucleus. The n.m.r. parameters obtained from the ⁵¹V and ¹⁹F spectra of related solutions such as V₂O₅-48%HF are also included in Table 1 for comparison. The differences in the line widths of the ¹⁹F spectra in different solutions at room temperature arise from chemical exchange between free F- and the species containing the four fluorines on vanadium. It is clear that the same species gives rise to all the observed spectra in aqueous HF solutions. It was assumed by Hatton et al.¹ that this species was the square pyramidal VOF₄⁻ ion in order to account for the equivalence of the four fluorine atoms indicated by the n.m.r. data. Although VSEPR (valence shell electron pair repulsion) theory⁷ would predict VOF_4^- to have a trigonal bipyramidal structure, it has indeed been found to have a square pyramidal structure in crystalline CsVOF₄.⁸

[†] On leave of absence from Bhabha Atomic Research Centre, Trombay, Bombay, 400085, India.

	51V				¹⁹ F			
Solution	Signal	δ, p.p.m.ª	J _{v-F} /Hz	Ref.	Line width /Hz	δ, p.p.m. ^b	J _{V-F} /Hz	Ref.
Aq. $(NH_4)_3VO_2F_4$	$\mathbf{q}^{\mathbf{d}}$	-775	117	This work	840	-246	117	This work
Aq. $Na(NH_4)_2VO_2F_4$	qd	- 770	117	This work	830	-247	117	This work
V ₂ O ₅ -48% HF	<u>.</u>	-777	116	1, 9, this	1215	-250		9
1205 11/0 111				work		-251	117	This work
NH4VO3-48% HF					1190	-255		This work
CsVOF₄~HF	qd		140°	9	1106	- 259		9
NH₄VO₃-HF	qd		140°	9	1125	-255		9
KF-V ₂ O ₅ -HF	qu		140°	9	1230	- 250		9

Table 1. ⁵¹V and ¹⁹ F N.m.r. spectral parameters in solutions containing $VO_2F_4^{3-}$ and in other related solutions.

^a With reference to ⁵¹V in VOCl₃. ^b With reference to ¹⁹F in solvent HF. ^c No quantitative fit for the spectra presented in ref. 9. ^d Quintet structure observed.

However, this is a consequence of fluorine bridging between the VOF_4^- ions which leads to an approximately octahedral arrangement of five fluorine atoms and one oxygen atom around the vanadium atom. The fluorine bridge is presumably destroyed in solution and the VOF₄⁻ ion would not then be expected to retain a square pyramidal shape. Howell and Moss⁹ assumed in fact that VOF₄⁻ in solution had the expected trigonal bipyramidal structure and they proposed that fast intramolecular fluorine exchange (pseudo-rotation)¹⁰ was responsible for the apparent equivalence of the four fluorines on the n.m.r. time scale. The broad ¹⁹F spectrum of the trigonal bipyramidal AsF₅ molecule at room temperature has been interpreted¹¹ as arising from five fluorines undergoing fast intramolecular exchange (pseudo-rotation) coupled to ⁷⁵As (I = 3/2) undergoing rapid quadrupole relaxation. In spite of the pseudo-rotation in AsF_5 , the value of eq, the electric field gradient, at the 75As site is not small enough to give a large enough τ (or y-value) to give a well resolved multiplet. Thus even if pseudo-rotation were to lead to equivalence of the four fluorines, the ⁵¹V nucleus in VOF₄ – (I7/2)and J_{y-x} 120 Hz) is not anticipated to have a large enough τ to give such a well resolved multiplet as is observed in solutions of V_2O_5 in 48% HF. This implies that the species in solution contains ⁵¹V in a site with symmetry higher than the C_{2v} symmetry of VOF₄⁻ undergoing pseudo-rotation.

One of the conclusions from a recent e.s.r. study of γ irradiated solid $(NH_4)_3VO_2F_4$ was that the $VO_2F_4^{3-}$ ion has a *trans* structure with D_{4h} symmetry as expected from the VSEPR theory.⁷ Since $(NH_4)_3VO_2F_4$ can be recrystallised from its aqueous solutions it is reasonable to assume that $VO_2F_4^{3-}$ retains its identity in solution and that the n.m.r. spectra in Figure 1 are due to this anion. With a D_{4h} symmetry, all four fluorines are equivalent and as the ⁵¹V has a pseuedo-octahedral environment, it is not surprising that V-F coupling is observed. Thus on the basis that the species in aqueous solutions is $VO_2F_4^{3-}$ with D_{4h} symmetry, all the n.m.r. observations are rationalised. Although, on the basis of the n.m.r. evidence alone we cannot rule out the possibility that the species in solution is VOF_4^- with a square pyramidal structure it is very probable that it would be hydrated by a water molecule in aqueous solutions thus causing it to adopt a *trans* octahedral VO(OH₂)- F_4^- structure. Depending on the acidity, this species might lose one or two protons to give finally VO₂ F_4^{3-} . Non-hydrated VOF₄⁻ presumably only exists in solutions containing very little water, *e.g.*, in solutions in anhydrous HF. It is noteworthy that the reported ⁵¹V-¹⁹F coupling constant for anhydrous HF solution is 140 Hz compared with the value of 120 Hz in aqueous solutions.

We thank the Natural Sciences and Engineering Research Council of Canada for financial support of this work.

Received, 1st October 1982; Com. 1157

References

- 1 J. V. Hatton, Y. Saito, and W. G. Schneider, Can. J. Chem., 1964, 43, 47.
- 2 U. R. K. Rao, K. S. Venkateswarlu, B. R. Wani, M. D. Sastry, A. G. I. Dalvi, and B. D. Joshi, *Mol. Phys.*, 1982, 47, 637.
- 3 J. A. Pople, Mol. Phys., 1958, 1, 168.
- 4 J. Bacon, J. W. Quail, and R. J. Gillespie, Can. J. Chem., 1963, 41, 3063.
- 5 R. J. Gillespie and J. W. Quail, Can. J. Chem., 1964, 42, 2671.
- 6 J. Bacon, R. J. Gillespie, J. S. Hartman, and U. R. K. Rao, *Mol. Phys.*, 1970, **18**, 561.
- 7 R. J. Gillespie, 'Molecular Geometry,' Van Nostrand Reinhold Co., London, 1972.
- 8 G. W. Bushnell and K. C. Moss, Can. J. Chem., 1972, 50, 3700.
- 9 J. A. S. Howell and K. C. Moss, J. Chem. Soc. A, 1971, 270.
- 10 R. S. Berry, J. Chem. Phys., 1960, 32, 936.
- 11 U. R. K. Rao, Ph.D. Thesis, McMaster University, Hamilton, Canada, 1967.